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ABSTRACT

A simple method of computing theoretical models of very massive stars endowed with fast axial
rotation and tangled magnetic fields is described and used in the present paper. Both of the two
perturbing (nongravitational) forces induce changes in the luminosity and radius that are studied as
functions of zero-age chemical composition, opacity, and evolutionary state of the interior. The central
condensation of the star is found to have a significant influence on shifts of the upper main-sequence
band in the H-R diagram if the perturbing force is concentrated in the stellar envelope (but not if the
perturbing force is distributed so as to be approximately proportional to gravity everywhere); the
layers of the envelope that contribute most heavily to the central condensation lie approximately at a
radius fraction of r/R = 0.5. It is shown that fast uniform rotation and intense envelope magnetic fields
lead to probably the largest possible shifts of the main-sequence band in the H-R diagram that rotation
and magnetic fields can induce. These displacements are, however, too small to account for the total
width of the observed main-sequence band at luminosities brighter than log (L/L ;) = 4.5.

Subject headings: stars: interiors — stars: magnetic — stars: massive — stars: rotation

I. INTRODUCTION

Evolutionary studies of rapidly rotating stars on the
upper main sequence have so far been concerned largely
with stars with masses of 10 M ; and less (Sackmann and
Anand 1970; Strittmatter, Robertson, and Faulkner
1970; Kippenhahn, Meyer-Hofmeister, and Thomas
1970; Meyer-Hofmeister and Thomas 1970; Musylev,
Tutukov, and Chevalier 1970; Meyer-Hofmeister 1972;
Gredley and Borra 1972; Tuominen and Musylev 1974;
Endal and Sofia 1976, 1978, 1979). It is of obvious
theoretical interest to extend the study of these stars to
higher masses, for which the only studies thus far pub-
lished, with one minor exception (Musylev 1972), refer to
unevolved stars (Mark 1968; Jackson 1970b; Sackmann
and Anand 1970; Sackmann 1970; Bodenheimer and
Ostriker 1970; Bodenheimer 1971; Monaghan and Smart
1971; Harris and Clement 1971; Whelan, Papaloizou,
and Smith 1971; Papaloizou and Whelan 1973; Stothers
1974; Clement 1979). An additional motivation is
provided by the following two observational facts. First,
many O-type stars are observed to be fast rotators
(Slettebak 1956; Balona 1975; Conti and Ebbets 1977;
Ebbets 1979), although precise values for their rotational
velocities have not yet been determined in most cases.
Second, the empirical main-sequence band as displayed
in the H-R diagram exhibits an enormous width for
O-type stars, which extends even into the region of bright
B-type supergiants (Kopylov 1959; Andrews 1968;
Stothers 1972; Humphreys and Davidson 1979). The
question therefore arises whether rotational effects, which
are known to expand stellar envelopes, may account for
this extraordinary widening.
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Another possible agent having qualitatively the same
effect as rotation is a severely tangled magnetic field.
Although it is not yet feasible to measure the magnetic
fields of O stars (whose spectral lines are significantly
broadened by rotation and macroturbulence), magnetic
fields ought to be present in some strength as a result of
the amplification of primordial seed fields during the
pre-main-sequence collapse phase. Furthermore, con-
vection and rotation may be assumed to have tangled the
magnetic field lines to a large extent. Somewhat sur-
prisingly, only a few models of upper-main-sequence
stars with tangled magnetic fields have been published so
far (Trasco 1970; Tutukov and Ruben 1974; Dudorov
1974; Stothers 1979).

The purpose of the present paper is to determine the
extent to which axial rotation and tangled magnetic fields
can affect the location of very massive main-sequence
stars in the H-R diagram. It will be demonstrated in § I1
that certain simplifying conditions prevailing in the inter-
iors of very massive stars permit their structure at any
specified stage of evolution on the main sequence to be
computed without recourse to laborious calculations of
detailed evolutionary tracks. Consequently, the predicted
main-sequence bands for rotating and magnetic stars of
high mass can easily be computed. The results of these
calculations are given in §§ III and IV, and a comparison
with observations is presented in § V.

II. UNPERTURBED STAR MODELS

A brief description of the structure of nonrotating,
nonmagnetic stars of high mass will be given here for the
purpose of orientation.
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TABLE 1
NONROTATING, NONMAGNETIC STAR MODELS

Stage M/Mo  log(L/Lo) 1log(R/Ry) logT. logT, logp. B. pe/<p> X,

ZAMS............ 15 4261 0.689 4484 7509 0735  0.898 30 0.739
30 5047 0.850 4600 7561 0499  0.782 27 0.739

60 5687 1.009 4680 7600 0312  0.640 26 0.739

120 6213 1171 4731 7629 0153 0501 27 0.739

TAMS............ 15 4.557 0.983 4.411 7.630 1003 0771 423 0.040
30 5.368 1238 4486 7690 0798 0576 768 0.026

60 5947 1457 4522 1729 0642 0417 1217 0.019

120 6.397 1.656 4535 7753 0495 0302 1713 0.018

According to the prevailing view, a normal star of high
mass lying on the zero-age main sequence (ZAMS) is
composed of a radiative envelope and a convective core.
By the time evolution has carried the star to its coolest
effective temperature during the phase of core hydrogen
burning (the TAMS stage), the convective core, now
almost devoid of hydrogen, has shrunk down to a small
fraction of its original mass. Layers that were formerly
inside the convective core comprise an intermediate zone
containing a gradient of hydrogen and helium.

The present simplification in computing these evolved
models is to regard the inhomogeneous zone, which is at
least partly convectively unstable, as being completely
semiconvective in the sense originally proposed by
Schwarzschild and Harm (1958). It then follows from
their work that, once the central hydrogen abundance X,
is specified, the whole stellar structure is uniquely deter-
mined without regard to the prior evolutionary history,
because the hydrogen abundance at ‘each layer of the
inhomogeneous zone is simply adjusted to satisfy the
condition of convective neutrality,

Vmd = Vad . (1)

Most other treatments of the inhomogeneous zone
have been found to lead to very similar structures for the
star (Stothers 1972; Schlesinger 1975).

In the present work, stellar models for the ZAMS and
TAMS stages have been computed by using essentially
the same physical input data as in an earlier paper
(Stothers 1972). The initial (hydrogen, metals) abundance
has been taken to be (X,, Z,)= (0.739, 0.021); Cox-
Stewart opacities have been adopted, except in some test
cases to be described below; and mass loss has been ig-
nored. In the earlier work, the TAMS stage was taken, for
convenience, to occur when X, = 0.05, but in the present
work it has been located exactly. Results for the new
stellar models are given in Table 1. These will be discussed
below in conjunction with a parallel set of results to be
derived for rotating and magnetic stellar models.

III. ROTATING STAR MODELS

Rotation has been introduced into the new stellar
models by a simple device in which the only modification
of the basic equations of spherical stellar structure is the
addition of a mean centrifugal force, averaged over a
spherical shell, to the gravitational force in the equation

of hydrostatic equilibrium. This equation then reads:

dP _ GM(r)p
T a0, @)
with
A=30%3/GM(r), (3)

Q being the angular velocity about the rotation axis
(Monaghan 1968). In the present approximation, r is to
be interpreted physically as the mean radius of the stellar
surface.

Our main concern here will be with the case of uniform
rotation, for three important reasons. First, the convec-
tive motions within the core and semiconvective zone are
likely, because of turbulent viscosity, to maintain rigid
rotation of these hydrodynamically connected regions,
while the Eddington-Vogt circulation currents in the
radiative envelope will probably penetrate the semicon-
vective zone, thereby coupling the envelope’s rotation
with the core’s. (If a strong magnetic field is present, its
rigidity would probably also help to maintain uniformity
of rotation in the magnetic layers.) Second, it is known in
the case of models of stars with lower masses that if these
stars begin their evolution in a state of uniform rotation,
they tend to preserve, in an approximate way, a state of
uniform rotation to the end of the main-sequence phase of
evolution, even if their available angular momentum is
assumed to be redistributed according to different laws
(Kippenhahn, Meyer-Hofmeister, and Thomas 1970;
Endal and Sofia 1978). There is no reason to believe that
models of more massive stars would evolve any dif-
ferently. Third, a state of uniform rotation, or a fair
approximation to it, is suggested by various kinds of
observational data (see Stothers 1972, 1973; Hardorp
1974).

If, then, uniform rotation is a reasonable assumption, it
will still be necessary to make other, less easily justifiable
assumptions in order to construct actual stellar models.
Thus, we assume that rotation has no significant effect on
the Schwarzschild criterion for convection, or on the
condition for convective neutrality, or on the actual
occurrence of semiconvection, other than the formal
inclusion of the factor 1 — 1 in the quantity V4, since
V.aq 18 inversely proportional to dP/dr, which is given by
equation (2). Although rotation leads to a number of
instabilities on various time scales (see, e.g., Endal and
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TABLE 2
UNIFORMLY ROTATING STAR MODELS (at breakup)
Ve
Stage M/M, Ar (kms™?) log (L/Lo) log(R/Ro) logT, logT, logp, B pe/<p> X,

ZAMS....... 15 0.3007 632 4225 0.738 4451 7.506 0.746 0.902 43 0.739
30 0.3007 741 5012 0.901 4.566 7.558 0.507 0.788 39 0.739
60 0.3007 867 5.655 1.066 4.644 7.598 0.318 0.647 39 0.739
120 0.3007 1007 6.185 1.237 4.691 7.627 0.158 0.507 44 0.739
TAMS ....... 15 0.3007 446 4.536 1.042 4376 7.629 1.009 0.775 645 0.040
30 0.3007 462 5.355 1311 4.446 7.689 0.801 0.579 1286 0.026
60 0.3007 494 5939 1.554 4471 7.729 0.645 0.419 2404 0.019
120 0.3007 535 6.391 1.786 4.468 7.753 0.498 0.303 4261 0018

Sofia 1978), the rate and extent of possible chemical
mixing due to these instabilities are not known. But in any
case the true gradient of hydrogen in the inhomogeneous
zone is not expected to differ very much from the gradient
based on equation (1).

The luminosity, radius, and effective temperature that
are actually measured for a rotating star depend on the
aspect angle. We shall follow a number of other authors in
assigning a mean effective temperature to our stellar
models based on the total emergent luminosity L and the

mean radius R:
T, = (L/4noR*)'* .
Similarly, we define {p» = 3M/4nR3.

(4)

A last quantity of interest is the equatorial velocity of
rotation, v,. From the idealized Roche model, we adopt
for the extreme case where centrifugal force balances

gravity at the equator
v, = 1.304RQ ,

()

the quantity 1.304R being the critical equatorial radius
(the polar radius is exactly % of this value) (Sackmann and

Anand 1970). Note that equation (3) provides the link
between Q and A, which, for the Roche model at breakup,
has a surface value of Az = 0.3007.

The adequacy of our methods to give numerically
accurate results for massive, uniformly rotating ZAMS
stars has been demonstrated elsewhere (Stothers 1974).
Even at the breakup limit, the maximum error incurred in
basic stellar quantities like luminosity and mean radius
has been shown to be only about one part in 103. For the
more centrally condensed TAMS models, the maximum
error is expected to be even smaller, since the approxima-
tions involved in our approach are most suited to the
infinitely condensed Roche model (cf. Faulkner,
Roxburgh, and Strittmatter 1968 ; Sackmann and Anand
1970). Details of the present ZAMS and TAMS models
are provided in Table 2.

Since the qualitative behavior of rotating models has
been discussed by so many authors, we need not repeat
this discussion here, but rather we turn immediately to a
brief comparison of our results with those published by
other authors. The comparison is shown in Table 3, where
the most important physical input data, including opacity

TABLE 3

COMPARISON OF DIFFERENCES BETWEEN NONROTATING AND UNIFORMLY ROTATING (at breakup)
STAR MODELS ON THE ZAMS

AL/L,  AR,/R,,

M/M Opacity X, Z, (%) (%) Reference
15l Modified Kramers® 0.670 0.030 —6.5 —-12 Sackmann and Anand 1970
15 Cox-Stewart 0.739 0.021 -7 -25 Sackmann 1970
15, Cox-Stewart 0.739 0.021 -79 -2.7 Present
20 Cox-Stewart 0.739 0.021 -1.5 -21 Sackmann 1970
20 Cox-Stewart® 0.739 0.021 -8.1 —-25 Papaloizou and Whelan 1973
282 .. Thomson N ¢ —48.5¢ - Mark 1968
282 Cox-Stewart® 0.739 0.021 —-80 -23 Papaloizou and Whelan 1973
30 Cox-Stewart 0.700 0.030 —gd Jackson 1970b
30, Cox-Stewart 0.739 0.021 -7.7 =22 Present
40 Cox-Stewart"® 0.739 0.021 =117 -19 Papaloizou and Whelan 1973
[ Cox-Stewart 0.739 0.021 -7.1 -09 Present
627 i Thomson ¢ ¢ —-172 —11.6 Mark 1968
[ O Thomson 0.750 0.030 —8.8 -24 Monaghan and Smart 1971
627 .o Cox-Stewart® 0.739 0.021 -73 -1.1 Papaloizou and Whelan 1973

120 Cox-Stewart 0.739 0.021 —-6.2 +12 Present

® Formula provided by Larson (Morris and Demarque 1966).
® Fitted formula provided by Papaloizou (1973).

¢ Polytropic model.
4 Extrapolated value.
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TABLE 4

DIFSERENCES BETWEEN NONROTATING AND UNIFORMLY ROTATING (at breakup)
STAR MODELS OF 15M ; ON THE ZAMS

AL/L, AR,Ro AR/Ry,  AT/T,

Opacity X, z, (/<P (%) (%) (%) (%)
Thomson................... 0.739 0.021 20 -10.6 -36 +109 -1.1
Cox-Stewart ............... 0.739 0.021 30 -79 -2.7 +119 -73

0.650 0.021 30 -78 -25 +122 -175
0.739 0.044 35 -13 -25 +122 -173
Modified Kramers®........ 0.739 0.021 37 —6.3 —-13 +13.5 -1
Carson ...............oue.l 0.739 0.021 43 -53 —-0.6 +143 =717

* Formula provided by Larson (Morris and Demarque 1966).

and chemical composition, are also quoted. In this and
other tables, AL/L, refers to the relative change in
luminosity between a nonrotating model (with lumino-
sity L) and a model rotating at breakup velocity; the
polar radius change AR,/R,, is defined analogously.
Four models are discrepant. Mark’s (1968) two polytro-
pic models have been discussed fully by Whelan, Papaloi-
zou, and Smith (1971) and by Papaloizou and Whelan
(1973). The apparent discrepancies of Sackmann and
Anand’s (1970) and Monaghan and Smart’s (1971)
models are due to the opacities used, as will be
demonstrated below. In addition, there are the simplified
nondimensional models constructed by Sweet and Roy
(1953), Roxburgh, Griffith, and Sweet (1965), Sanderson,
Smith, and Hazlehurst (1970), Jackson (1970a), Jackson
et al. (1971), and Smith (1973, 1977), which are not
shown in Table 3.

In order to ascertain which single structural parameter
is most important in controlling the luminosity changes,
we have studied a number of special models, whose
characteristics are given in Table 4, thereby forming a
supplement to Table 2. The effects on the models of
zero-age chemical composition, opacity, and evolution
are included in these two tables. It is found that the most
influential structural parameter is the central condensa-
tion. This quantity determines, in essence, how much of
the star’s mass feels the effect of uniform rotation, as can
be understood by considering the simple rotational rela-
tion Agz/A. = p./{p)>. With a large value of p,/{p), the
interior of the star rotates very slowly in comparison with
the surface layers; accordingly the luminosity is hardly
influenced. On the other hand, the amount of distortion
of the surface layers depends almost exclusively on
the properties of the outer part of the envelope (see
Appendix); hence the percentage change in the sur-
face radius is rather less sensitive to the star’s central
condensation.

In addition to the models rotating at breakup, we have
computed several less-extreme models for the purpose of
determining whether the drop in luminosity is approxi-
mately proportional to Q2, as has been found to be true
for rotating models of lower mass (Faulkner, Roxburgh,
and Strittmatter 1968; Kippenhahn and Thomas 1970;
Sackmann and Anand 1970; Sackmann 1970). For
convenience, we show in Figure 1 our results in terms of

the alternate quantities A, and A log (L/L ), all for our
standard physical assumptions. It is found that A log
(L/L ) is roughly linear with A, and nearly independent
of stellar mass. The same conclusion holds for A log
(R/R ), as well as for Alog T,, which is shown in the lower
panel of this figure.

Turning now to the TAMS models, we display a
parallel set of results for A log (L/L ) and A log T, in
Figure 2. Strictly speaking, the different models for a
specified mass have slightly different hydrogen profiles
depending on the assigned value of 1z, because we have
used equation (1) to determine the variable hydrogen
abundance in the inhomogeneous zone and also because
the TAMS stage does not correspond to a fixed value of
the central hydrogen abundance. Supplementary calcula-
tions, however, indicate that this small compositional
difference has a negligible effect on the results. Quali-
tatively the same behavior of A log (L/L,)and A log T, is
found for the TAMS models as for the ZAMS models, but
the drop in luminosity is now somewhat reduced on
account of the large central condensation of the TAMS
models (see also Hazlehurst and Thomas 1970). In com-
pensation, the mean effective temperature decreases by a
correspondingly larger amount. One further result is
worth noting here: when the mean radius of the star
exceeds ~ 15 R, uniform rotation causes the entire
surface of the star (including the poles) to expand.

The location of both the ZAMS and TAMS models on
the H-R diagram is shown in Figure 3. If one may
correctly judge from the evolutionary sequences pub-
lished for models of stars of lower mass, the TAMS
models at maximum rotation are not to be regarded,
necessarily, as evolutionary derivatives of the fastest-
rotating ZAMS models. It is sufficient that they have
started out with modest initial velocities and simply have
conserved their total angular momentum during evolu-
tion (Crampin and Hoyle 1960). Larger initial velocities
will cause them to lose some mass, but the amount of
matter ejected seems to be very small in all cases
computed so far (Nobili and Secco 1969; Strittmatter,
Robertson, and Faulkner 1970; Meyer-Hofmeister and
Thomas 1970; Musylev, Tutukov, and Chevalier 1970;
Gredley and Borra 1972). Therefore, we may safely regard
the displaced TAMS line in Figure 3 as representing the
maximum shift obtainable for stars that are rotating
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T T T (H?*»/24m oc P%; then it follows that
ZAMS
° dP GMvp( 1 ) )
dr r2 \l+av
__ =001} 4 .
<‘;’ with
S -oo2} ] v=(H?)/24zP . @®)
% For lack of a better alternative, the criterion for convec-
—003} 120 | tion and the definition of semiconvection will be assumed
g‘o’ to remain unchanged in the presence of the magnetic field,
15 except insofar as V.4 is changed by the use of equation
-004 1 : (7). Chemical mixing due to magnetically caused instabi-
lities will also be ignored. In any case, we are concerned
o ) here only with small (though not negligible) values of v.
Three spatial distributions of the magnetic field inten-
sity will be considered for illustration: (1) a uniform mean
~0.01 . field intensity ; (2) a nonuniform mean field intensity with
. v = constant everywhere; and (3) the same as case (2), but
= with no magnetic field allowed in the convective core.
g ooz § The first case, in which (H?) is constant everywhere,
3 leads to a state of hydrostatic equilibrium which is
~003 § identical to that for the nonmagnetic case, as a glance at
equation (6) reveals. Therefore, the stellar models of
Table 1 apply also to the present case, regardless of how
-004 . large an intensity of the magnetic field is assumed.
L 1 1
0 ol 02 03
>‘R T T I
Y TAMS
F1g. 1.—Differences in surface quantities between nonrotating and -
uniformly rotating star models on the ZAMS as a function of the surface < 120
rotation parameter A,. Stellar masses are indicated in solar units. (:Dl -00I } 60
% 30
uniformly. Fortunately, both this line and the displaced -0.02 5
ZAMS line can be compared directly with observations—
even though these lines refer to mean stellar quantities— i
because the locations of lines like these in the H-R °
diagram are known to be virtually independent of aspect
angle (e.g., Sweet and Roy 1953; Roxburgh and Strittmat- -00! 4
ter 1965; Faulkner, Roxburgh, and Strittmatter 1968).
-0.02 .
IV. MAGNETIC STAR MODELS
Stellar magnetic fields probably have varying degrees = -003 i
of geometrical complexity, but we shall consider here the 3
limiting case of a severely tangled interior magnetic field, 3 '°
which is probably appropriate to very massive stars. A ~004 30 4
field of this kind exerts an isotropic pressure of amount
(H?)/24m, where (H?) represents the mean square of the ~0.05 i
magnetic field intensity averaged over a spherical shell ‘ 60
(Trasco 1970). To compute the relevant stellar models, it
is sufficient to proceed in the same fashion as we did in the -0.06 .
case of axial rotation by modifying the equation of
hydrostatic equilibrium only. This equation is then . . > 120
written: 0 0.l 02 0.3

dar 2 dr\ 24n (6)

A further simplification results from setting

dP_ GM(r)p d(<H2>)'

AR

F1G. 2.—Differences in surface quantities between nonrotating and
uniformly rotating star models on the TAMS as a function of the surface
rotation parameter Ag. Stellar masses are indicated in solar units.
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6.5+ .

120

55

LOG (L/Ls)

5.0 L

451

40 1 1 1 | 1 1 1 1 |

475 465 455 445 4.35
LOG Te

Fi1G. 3.—Theoretical H-R diagram showing the ZAMS (solid curves)
and TAMS (dashed curves) for both nonrotating and uniformly rotating
(at breakup) star models. Stellar masses are indicated in solar units.

In the second case, a strong magnetic field has a large
effect on the models, since the ratio of total magnetic
energy to total gravitational potential energy is now quite
significant (it is completely negligible in the first case for
any reasonable surface field) (Stothers 1979). Because the
magnetic stresses support much of the weight of the star,
the average thermodynamic pressures, and hence the
average temperatures, are lower ; therefore the luminosity
decreases. This argument can be made more quantitative
by noticing that with v constant the basic equations admit
a crude similarity solution, consisting of L ~ (1 + v)™4,
and R ~ (1 + v)" %5, It is clear that the radius, together
with the central condensation, has only a marginal
dependence on v; but the relatively strong dependence of

TABLE S
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the luminosity on v enables us to place a stringent limit of
v < 0.2 on the possible magnetic field strength in upper
main-sequence stars, by considering the dispersion of the
observed mass-luminosity relation. As a practical upper
limit, however, we shall adopt v = 0.11. This corresponds,
in the photosphere of the star, to a rms magnetic field
strength of several hundred gauss. Stellar models based
on this limit are presented in Tables 5 and 6. The
numerical results support the simple predictions of
the similarity solution, including the prediction that
the size of the luminosity and radius changes should be
essentially independent of the star’s central condensation.

When v is set equal to zero in the convective core, we
obtain the third of our assumed distributions of the stellar
magnetic field. This case allows for the possibility that
turbulent convection, though it may, in conjunction with
rotation, generate a small magnetic field, may also dissi-
pate or expel any preexisting large magnetic field. Stellar
models corresponding to this case are listed in Table 5. In
the models of highest mass, where the convective cores
are very large, the perturbing effects of the magnetic field
are concentrated relatively near the surface ; therefore the
radii are changed by a larger amount than are the lumino-
sities. In the limit of very small stellar masses, the
situation reverts to the case discussed in the preceding
paragraph.

Vector displacements of all the magnetic models of
Table 5 are shown on the H-R diagram in Figure 4.
Although the displacements of the individual models are
large, they do not result in significant shifts of the ZAMS
and TAMS lines as a whole in the case where v is constant
throughout the star. But if the magnetic field is con-
centrated mostly in the stellar envelope, the ZAMS and
(though not explicitly shown) TAMS lines become shifted
noticeably toward lower effective temperatures. This
resulting pattern of shifts enables us to understand the
displacements toward higher effective temperatures
displayed by some of the models of Tutukov and Ruben
(1974), because these previous models have more centrally
concentrated magnetic fields than have ours.

The shifts exhibited by the magnetic models are remini-
scent of the shifts obtained for rotating models with

MAGNETIC STAR MODELS

Envelope Core

Stage v v log(L/Lo)  log(R/Ro) logT, logT, logp, B. p/<p> X,
ZAMS............ 15 0.11 0.11 4083 0.677 4445 7492 0790 0918 31 0.739
15 0.11 0 4.159 0.734 4436 7502 0773 0910 45 0.739
30 0.11 0.11 4903 0.840 4569 7547 0539 0811 27 0.739
30 0.11 0 4989 0.904 4558 7557 0519 0.794 40 0.739
60 0.11 0.11 5575 0.999 4657 7589 0342 0672 26 0.739
60 0.11 0 5.660 1.072 4642 7598 032 0647 41 0.739
120 0.11 0.11 6.124 1.160 4714 7621 0179 0531 27 0.739
120 0.11 0 6.201 1.243 4692 7629  0.158  0.505 46 0.739
TAMS ............ 15 0.11 0.11 4.358 0.948 4379 7605 1037 0815 358 0.051
30 0.11 0.11 5228 1.207 4467 7673 0822 0620 657 0.031
60 0.1 0.11 5853 1435 4509 7721 0674 0448 1126 0019
120 0.11 0.11 6.325 1.639 4525 7750 0535 0324 1671 0015
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TABLE 6
DIFFERENCES BETWEEN NONMAGNETIC AND STRONGLY MAGNETIC (v = 0.11)
STAR MODELS OF 15 M ON THE ZAMS

AL/L,  AR/R,  AT/T,

Opacity X. z, (/<P D)o (%) (%) (%)
Thomson................. 0739 0021 20 311 —-41 -1
Cox-Stewart ............. 0739 0021 30 -336 -27 —86

0650 0021 30 —-325 —25 —82
0739 0044 35 ~353 -25 —-90
Modified Kramers®...... 0739 0021 37 —341 —29 -86
Carson ................... 0739 0021 43 ~344  —41 ~80

* Formula provided by Larson (Morris and Demarque 1966).

differing central concentrations of angular momentum
(Mark 1968 ; Bodenheimer 1971; Monaghan and Smart
1971). The resemblance is more than merely coincidental,
since a comparison of equations (2) and (7) reveals the
identity (1 — A) = (1 + av)™ '.For this reason, a compari-
son of Figures 3 and 4 can be taken as affording a
comparison between uniformly rotating models (with
Ag=0.3007) and nonuniformly rotating models (with
4 =0.1), provided that the rotational distortion of the
star’s inner regions can be neglected.

V. CONCLUSION

The present numerical calculations suggest that the
largest possible displacements of the upper-main-
sequence band in the H-R diagram due to axial rotation
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F1G. 4—Theoretical H-R diagram showing the ZAMS (solid curves)
and TAMS (dashed curves)for both nonmagnetic and strongly magnetic
(v = 0.11) star models. The ZAMS for magnetic models with v = 0 in the
convective core is also shown. Stellar masses are indicated in solar units.

and tangled magnetic fields are likely to arise when the
rotation is approximately uniform and the magnetic
fields are concentrated in the outer part of the envelope. A
simple analytic calculation (see Appendix) demonstrates.
that the region of the star which has the most weight in
determining the surface radius is located in the outer part
of the envelope around a radius fraction of r/R = 0.5.
Unfortunately, it is not known how rotation and mag-
netic fields interact with each other in a real star. But we
have at least verified by a few additional numerical
calculations that the vector displacements in the H-R
diagram due to each of the two perturbations treated
separately are linearly additive, to a close approximation,
if one wishes to obtain the combined displacement due to
both perturbations acting together. Furthermore, the
sizes of the displacements are found to be proportional to
Ag and to v, to a good approximation.

In a random sample of real stars, there will inevitably
be some intrinsic dispersion of the rotational velocities
and magnetic fields. Except for the unlikely case in which
an unevolved star has a greatly perturbed central region,
the hot edge of the main-sequence band in the H-R
diagram should correspond to the most slowly rotating,
least-magnetic ZAMS stars. By the same reasoning, the
cool edge should refer to the TAMS stars with the largest
radial distortions. It is therefore interesting to observe
that for luminosities greater than log (L/L ;) = 4.5 there
appears to be no determinable cool edge; the brightest
main-sequence stars just merge into the supergiants.

This fact cannot be explained by the present calcula-
tions. Rotation and magnetic fields, together, can displace
the cool edge by at most 4 log T, = 0.08 (rotation alone
causes a shift of less than 6 log T, ~0.04). The present
models therefore cannot close the gap of at least § log
T, ~0.15 that separates the reddest nonrotating, non-
magnetic models burning core hydrogen from the bluest
nonrotating, nonmagnetic models burning core helium,
in stages of evolution that slow enough to be readily
observable (Stothers and Chin 1976). As far as rotation
and magnetic fields are concerned, it is most unlikely
that the incorporation of these effects could make the
helium-burning models any bluer. Therefore, we con-
clude that the observed distribution of early-type stars in
the H-R diagram probably requires a theoretical explana-
tion along some entirely different line.
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APPENDIX

INFLUENCE OF OPACITY AND ROTATION ON THE STELLAR RADIUS

A simple analytic treatment will be given here of the way in which opacity and rotation in the outer layers of the stellar
envelope affect the total radius of a massive star. The region of the star in question will be assumed to be in radiative
equilibrium, and the luminosity L, the mass M, and the ratio of radiation pressure to total pressure 1 — f will be taken to
be constant there. )

If the opacity coefficient is represented approximately by the formula k = x, p*T~", « and  being constants, the local
effective polytropic index can easily be shown to be

=G+l +9), (A1)

in the absence of rotation (Cox and Giuli 1968, eq. [20.33]). Now, in all realistic cases, the hot inner part of the envelope is
dominated by electron-scattering opacity, so that any change, let us specify an increase, in the uncertain low-temperature
opacities will also affect (here increase) #. It then follows that n too will increase; consequently, according to simple
polytrope theory (e.g., Cox and Giuli 1968, Table 23.1), the central condensation of the star will grow, and this implies a
larger stellar radius.

To determine which layers in the envelope are most effective in changing the radius, we formally integrate the equation
of radiative equilibrium:

T 1 [16mck(1 — B)
= il ik Sl
R-—r J [ wpm, L

r* being the location of the base of the envelope. (In very centrally condensed models, r* < R, and it is valid to ignore r*
entirely.) The term appearing in brackets in equation (A2) can, by virtue of our initial approximations, be assumed to be
constant. Moreover, we have chosen In T as the independent variable because its range is (to within a few percent)
independent of the particular model; specifically, In T* — In T, X 7. Therefore, the problem reduces to determining where
r*T has its maximum. For T we use the following integral of the equation of hydrostatic equilibrium:

r- b %) (a3)

(Cox and Giuli 1968, eq. [20.115]). It then easily follows that r*T is largest at r/R = 0.5.

At this layer in actual stellar models, we find M(r)/M = 0.90 + 0.05, thus confirming our initial assumption that
M(r) ~ M. Furthermore, the temperature at this layer is found to be log T = 6.9 + 0.2. Consequently, our results agree
well with those of Parsian, Refsdal, and Stabell (1974), who integrated a series of stellar models for 15 M ; in which
arbitrary opacity changes were made in different layers of the star, yielding a peak effect near log T = 7.0. But our results
are evidently more general than theirs, provided of course that none of our initial assumptions is violated. It should be
noted that the function r?T varies rather slowly around its maximum value, and therefore is still of substantial size at
temperatures of log T = 5.5-6.5, where the subsurface opacities are most uncertain. The resulting effect on the stellar
radius (i.e,, on p,/{p>) can be seen in the sequence of nonrotating models for 15 M , in Table 4, where four different
opacity representations are listed in order of increasing size of the low-temperature contribution to the opacities.

Next we turn to the effect caused by uniform rotation. Let the run of the rotation parameter 1 — 4 be approximated by
CP*, where P is the pressure and { and C are constants. Then the local effective polytropic index becomes

n=0CB+n+0/(1+a-2). (A4)

Since 1 — Aincreases inward from the surface, { must be positive. Hence uniform rotation increases n and, consequently,
R. To determine the most effective layers for increasing the radius, we formally integrate the equation of hydrostatic
equilibrium:

]rsz InT, (A2)

InT. K

[n T k(n+ 1)

— ¥ = = 7
R=r mr. 1 — A4 [pupm,GM

]rsz InT. (A5)

Again, the weighting function is seen to be r*T; but for T we must now use

where we have employed the approximation A = A(r/R)?, which is certainly valid in the outer part of the envelope. The

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980ApJ...242..756S&amp;db_key=AST

J. 21242, (75850

DAD.

rt

764 STOTHERS

new maximum of r>T will occur at a value of 7/R that is determined from the solution of the cubic equation
20(r/R)> — 2+ Ag)(r/R) +1=0. (A7)

In the limit of maximum rotation (i.e., at equatorial breakup), r/R = 0.46, whereas in the limit of very slow rotation,

r/R = 0.50.

Even if the rotation law is not that of uniform rotation but Q increases inward as r~ 32 (ie., 4 is approximately
constant), a value of r/R = 0.50 is obtained. More generally, any perturbing force that can be formally represented as a
constant multiple of the local gravitational force will have its greatest effect on the stellar radius at r/R = 0.50.
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